## MATH 204 PRACTICE FINAL Please
work out each of the given problems on your own paper.
Credit will be based on the steps that you show towards the final answer.
Show your work.
Solve the
following differential equations. A.
(x B.
(ye C.
y D.
1 E.
(x F.
x G.
H.
x
x
Lake Tahoe holds 30 cubic kilometers and Fallen Leaf Lake holds 0.5 cubic kilometers. It is estimated that there are currently 20 tons of trout in Lake Tahoe and 1 ton of trout in Fallen Leaf Lake. Water flows from Fallen Leaf Lake to Lake Tahoe at 0.1 cubic kilometers per day. Through an underground channel, water flows from Lake Tahoe to Fallen Leaf Lake at 0.01 cubic kilometers per day. Water with 2 tons of trout per cubic kilometer flows into Fallen Leaf Lake from the desolation wilderness at a rate of 0.09 cubic kilometers per day. Water flows out of Lake Tahoe into the Truckee River at a rate of 0.09 cubic kilometers per day. Assume that when water flows out of either lake the density of the trout in the outflow is equal to the density of the trout in the lake that is the source of the outflow. Set up a system of differential equations that model this situation.
Given
that y = x
(x
find
a linearly independent solution by reducing the order.
A
six Newton weight is attached to the lower end of a coil spring suspended from
the ceiling, the spring constant of the spring being 27 Newtons per meter.
The weight comes to rest in its equilibrium position, and beginning at t
= 0 and external force given by F(t) =
12 cos(20t)
Please
answer the following true or false. If
false, explain why or provide a counter-example.
If true, explain why. A. If the lion population P(t) of Africa follows the differential equation
P'(t) = -10P(10,000 - P)(30,000 - P) B.
(15 Points) Let f(t) = sin(t C.
(15 Points) Suppose that y
e
D.
(15 Points) Suppose that two-dimensional system |