Higher Order Homogeneous Differential Equations With Constant Coefficients

 

We now investigate how to solve higher order homogeneous linear differential equations with constant coefficients.  The good news is that we use the same technique that we used for second order differential equations.  We demonstrate this by an example.

Example

Solve

        y''' - 4y'' + y' + 6y  =  0

 

Solution

We make the assumption that the solution has the form

       y  =  ert

Then

        y' =  rert         y''  =  r2ert         y'''  =  r3ert

Substituting back into the differential equation, we get

        r3ert - 4(r2ert) + rert + 6ert   =  0

Dividing by ert, we get the characteristic equation

        r3 - 4r2 + r + 6  =  0

We can factor to find the roots of the equation.  A calculator can efficiently do this, or you can use the rational root theorem to get

        (r + 1)(r - 2)(r - 3)  =  0

       r  =  -1        r  =  2        or       r  =  3

The general solution is

       y  =  c1e-t + c2e2t + c3e3t

 

Example

Find the solution to

        y(v) - 4y'''  =  0        y(0)  =  2    y'(0)  =  3    y''(0)  =  1    y'''(0)  =  -1,    y(iv)(0)  =  1

 

Solution

We have the characteristic equation

        r5 + 4r3  =  0   

Which has a root of order 3 at

        r  =  0

and complex roots

       r  =  2i     and    r  =  -2i

We use what we have learned about repeated roots and complex roots to get the general solution.  Since the order of the repeated root is 3, we have

        y1  =  1,        y2  =  t,        y3  =  t2    For order 2, multiply by t and t2

The complex roots give the other two solutions

        y3  =  cos(2t)       and       y5  =  sin(2t)

The general solution is

        y  =  c1 + c2t + c3t2 + c4 cos(2t) + c5 sin(2t)

Now Find the first four derivatives

        y'  =  c2 + 2c3t - 2c4 sin(2t) + 2c5 cos(2t)

        y''  =  2c3 - 4c4 cos(2t) - 4c5 sin(2t)

        y'''  =  8c4 sin(2t) - 8c5 cos(2t)

        y(iv)  =  16c4 cos(2t) + 16c5 sin(2t)

Now plug in the initial conditions to get

        2  =  c1 + c4

        3  =  c2  + 2c5

        1  =  2c3 - 4c4

        -1  =  8c5

        1  =  16c4

 

We can solve this either by hand or by using a calculator to get

       

        c1  =   31/16        c2  =  23/4          c3  =  5/8          c4   =  1/16       c5  = 1/8

The solution is

        y   =   31/16  +  23/4 t  +  5/8 t2  +  1/16 cos(2t)  +  1/8 sin(2t)

 


Back to the Application and Higher Order Equations Home Page

Back to the Differential Equations Home Page

Back to the Math Department Home Page

e-mail Questions and Suggestions