Statistics

- Measures of the Center
- Measures of the Spread
- Measures of Relative Standing

Mean

- The mean (often thought of the average) is defined by

Population Mean: $\mu=\frac{1}{n} \sum x$
Sample Mean: $\bar{x}=\frac{1}{n} \sum x$

Median, Mode, and Midrange

- Median: The middle number from the data or the mean of the middle two.
- Mode: The data value(s) that occurs the most frequently.
- Midrange: The average of the minimum and maximum values.

Weighted Mean

- Weighted Mean:

Example: Your grade is based on : Homework $=100$, Quizzes $=100$

$$
\text { Exams }=600, \text { Projects }=200
$$

Suppose your homework average is 95\%, your quiz average is 84\%, your exam average is 78\%, and your project average is 98%. What is your course grade (based on the weighted average)?

Variance and Standard Deviation

- The standard deviation is a measure of the spread of the data. It is defined by

Sample Standard Deviation: $s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$
Population Standard Deviation: $\sigma=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}$

- The variance is the square of the standard deviation.

Rule of Thumb

- If we take the data and throw away the outliers, the "usual values" are what's left. The maximum and minimum of the usual values are approximately

Minumum usual value $\approx \bar{x}-2 s$ Maximum usual value $\approx \bar{x}+2 s$

Estimating the Standard Deviation

- To estimate the standard deviation, remove the outliers and divide the range by 4.

The Empirical Rule

- About 68% of the data lie within 1 standard deviation of the mean.
- About 95\% of the data lie within 2 standard deviations of the mean.
- About 99.7% of the data lie within 3 standard deviations of the mean.
- Note: The empirical rule works best when the data is approximately normal.

Chebyshev's Theorem

The proportion of any set of data lying within K standard deviations of the mean is always at least $1-1 / K^{2}$.

- At least 75% of all values lie within 2 standard deviations of the mean.
- At least 89\% of all values lie within 3 standard deviations of the mean.

Coefficient of Variation

- Coefficient of Variation

$$
C V=\frac{s}{x} \cdot 100 \%
$$

z Scores

- The z score is defined by

$$
z=\frac{x-\mu}{\sigma}
$$

It tell us the number of standard deviations from the mean.

Percentiles

- The percentiles divide the data into 100 groups with about 1\% of the data in each group.

$$
\text { Percentile }=\frac{\text { number of values less than } x}{\text { total number of values }} \cdot 100
$$

- The first quartile $(\mathrm{Q} 1)$ is the $25^{\text {th }}$ percentile and the third quartile is the $75^{\text {th }}$ percentile.
- The Interquartile Range (IQR) is the difference between the first and third quartiles

Boxplots

We construct a boxplot as follows

- Find the five point summary: Minimum, Q1, Median, Q3, and Maximum.
- Put horizontal bars at each of these values.
- Connect Q1 and Q3 to make a box.
- Draw lines from the Min to Q1 bars and from the Max to Q3 bars to make the whiskers.

