
Regression Line

Residuals
Least Squares Regression Line
Prediction Interval

Residuals

The residual is the difference between the *y*-value of the point and the *y*-value of the line.

Least Squares Regression Line

- The Least Squares Regression Line is the line that has the smallest sum of the squares of the residuals. $\hat{y} = b_0 + b_1 x$
- The Slope is the rise over the run so if x changes by 1 then y tends to change by the slope.
- The y-intercept is the value of y when x is 0.

Example

A study was done to look at the relationship between packs of cigarettes smoked per day and how long a person lives. The equation of the regression line is: $\hat{y} = 84 - 3x$

•Use the regression line to predict how long a person who smokes 4 packs a day will live.

•Interpret the slope.

•Interpret the y-intercept.

Example

A realtor is looking at the relationship between the year and the population (in thousands) of South Lake Tahoe . The equation of the regression line is: $\hat{y} = -975 + \frac{1}{2}x$

•Use the regression line to predict the population in 2000.

- •Interpret the slope.
- •Interpret the y-intercept.

Prediction Interval

We can use the regression line to make a prediction for y given an x. This is just a prediction and has error. We can form a confidence interval for the this y given x. If r^2 is large, then it is useful to use the value of x to predict y. Otherwise it is not useful.

Finding a Prediction Interval

Data was taken to see the relationship between the price that a motel charges and the number of rooms that are filled. The data is shown below. Find a prediction interval for the number of rooms filled when the motel charges \$80 per room.

Price	40	40	50	50	60	65	70	75
Rooms	92	80	85	81	78	75	80	65

Price	85	85	90	95	100	100	105	110
Rooms	50	55	60	49	45	50	52	35

LinRegTInt

Finding a Prediction Interval

Data was taken to see the relationship between the age when a person has their first kiss and the age when virginity is lost. Find a prediction interval for the age of lost virginity for a person who experienced his/her first kiss at age 15.

Kiss	12	12	13	13	13	14	14	14
Virginity	14	17	20	19	16	17	18	21

Kiss	15	16	16	17	17	18	18
Virginity	15	19	17	22	21	20	23

LinRegTInt