Practice Exam 2

Please work out each of the given problems.  Credit will be based on the steps that you show towards the final answer.  Show your work.

 

Problem 1  

Use your calculator to find log329 rounded to three decimal places.

Solution

We use the change of base formula.

                          log 29            1.4624
        log3 x  =                    =                        =   3.065
                          log 3               0.4771

 

Problem 2

Solve for x:   ln(x + 1) + ln(x + 2)  =  3

Solution

First use the sum to product formula to write this as a single logarithm.

        ln[(x + 1)(x + 2)]  =  3

Now write this as an exponent

        (x + 1)(x + 2) = e3 

Multiply the left hand side out to get

        x2 + 3x + 2  =  e3 

or

        x2 + 3x + 2 - e3 

This is a quadratic with 

        a  =  1        b  =  3        c  =  2 - e3

We can use the quadratic formula to get

       

 

Problem 3

The number of grams N of C14 left in a fossil after t years is 

        N = 0.03e-.000121t 

A fossil has been analyzed and found to contain 0.0002 grams.  How old is the fossil?

Solution

We have

        0.0002 = 0.03e-.000121t 

        0.0066667 = e-.000121t 

Now turn this into a natural logarithm equation

        -0.000121t = ln(0.0066667)  =  -5.01

Divide by -0.000121 to get

        t  =  41,410 years old

 

Problem 4

Write

      2 logq (5x)  - logq (3x - 2) as a single logarithm

Solution

First use the power rule to get

       logq (5x)2  - logq (3x - 2)

      =  logq (25x2) - logq (3x - 2)

Next use the quotient property to get

                   25 x2 
        logq                  
                  3x - 2

  

Problem 5

Expand the logarithm 

                  25 x10 
        log5                    
                    y12

as much as possible and simplify.

Solution

First use the quotient property of logs to get

        log5(25x10)  -  log5(y12)

Now use the product property on the first term to get

        log5(25)  +  log5(x10)  -  log5(y12)

Now use the power property and the fact that 25 = 52 so that the first term is just 2.

        2  +  10 log5(x)  -  12 log5(y)

 

Problem 6

A. Find the equation of the conic shown below

Solution

Since the vertices are at (-4,0), (4,0) and (0,-2), (0,2), the conic is an ellipse with a = 4 and b = 2.  The equation is

             x2            y2    
                     +                =  1
            16            4

 

B.    Sketch the graph of the conic with the equation below:

             9y2   -   x2   =  36

Solution

First divide all three terms by 100 to get

             y2            x2    
                     -                =  1
            4             36

Now notice that this is a hyperbola with a = 6 and b = 2.  Now sketch the hyperbola.  The vertices of the hyperbola are at

(0,-2) and (0,2).  The helper points to complete the rectangle are at (-6,0) and (6,0).  If you sketch the rectangle and use the diagonals as the asymptotes, you will get the graph shown below.

 

Problem 7

Solve the following nonlinear system of equations

         2x2 - 3y2  =  29
         x2 + y2  =  17

Solution

We can multiply the second equation by 2 to get

         2x2 - 3y2  =  29
         2x2 + 2y2  =  34

Now subtract the second equation from the first to get

        -5y2  =  -5

        y2  =  1

        y  =  -1        or        y  =  1

Plugging these into the second equation gives

        2x2 + 2  =  34

        x2 + 1  =  17

        x2  =  16

        x  =  -4        or        x  =  4

This gives the four points

        (-4,-1), (-4,1), (4,-1)  and  (4,1)

 

Problem 8 

A.  Find the indicated unknown

        8, 13, 18, 23, ..., 88            n  =  ?

Solution

This is an arithmetic sequence since 

        13 - 8  = 18 - 3  =  23 - 18  =  5

The common difference is d  =  5.

The first term is 8, so the general formula is

        an  =  8 + 5(n - 1)

The last term is 88, so we set

        88  =  8 + 5(n - 1)    

        80  =  5(n - 1)    Subtract 8

        16  =  n - 1        divide by 5

        n  =  17        add 1

 

 

B.  If the second term of a geometric sequence is -2/3 and the third term is 1/3, find a1 and r.

Solution

Since this is a geometric sequence, we can find r by dividing a term by its previous term.  That is

                 1/3             1         3           1
r  =                =            x          = -                                
           -2/3             3        -2           2
                   

Now we can find a1 by using the formula

        a2 = a1 (r)1

or

        -2/3  =  a1(-1/2)

so that

                 -2/3             -2         -2          4
a1  =                =            x          =                                   
             -1/2             3          1           3
 

 

Problem 9

Sketch the graph of the circle with equation 

        x2 + y2 + 4x - 6y  =  3

We first complete the squares

         x2 + 4x + 4 + y2 - 6y + 9  =  3 + 4 + 9

        (x + 2)2 + (y - 3)2  =  16

Hence the center is at (-2,3) and the radius is 4.  The graph is shown below.

   

Problem 10

Find the equation of the parabola that opens downward, has vertex (1,3) and passes through the point (2,1).

Solution

The standard equation is 

        y  =  a(x - h)2 + k

Since the vertex is at (1,3) we have

        y  =  a(x - 1)2 + 3

Since it passes through the point (2,1), we have

        1  =  a(2 - 1)2 + 3  =  a + 3

hence

        a  =  -2

The parabola has equation

        y  =  -2(x - 1)2 + 3  =  -2(x2 - 2x + 1) + 3

        y  =  -2x2 + 4x + 1

 

Problem 11

Lake Tahoe Community College had 4200 students in 2002, and has had a enrollment decline of 150 students each year since 2002

A.  Find the enrollment for each of five years, beginning with 2002.

Solution

To find the enrollments, just subtract 150 from the previous number.  The enrollments are shown below:

Year Enrollment
2002 4200
2003 4050
2004 3900
2005 3750
2006 3600

B.  Find the general term an of this sequence.

This is just an arithmetic sequence with first term 4200 and common difference -150.  The general term is

        an = a1 + d(n - 1)  =  4200 + (-150)(n-1)

        an  =  4200 - 150(n - 1)