Solutions to the Odd Problems on Hyperbolae Centered at the Origin   1.  For the hyperbola               x2            y2                          -                  =  1              9              4 the vertices are at the points  (-3,0) and  (3,0) . 3.  The asymptotes of the hyperbola                x2            y2                          -                  =  1              9              4 have equations y = -2/3 x  and  y = 2/3 x . 5.  The graph of 4x2 - 25y2 =  36 is not a hyperbola since the right hand side is not equal to 1. True, since hyperbolae do not pass the vertical line test. 7.          x2            y2                          -                  =  1              4             36     9.          y2            x2                          -                  =  1             36             25 11.         x2                                -   y2       =  1              9               13.                       x2                 y2   -                  =  1                           7         15.         x2                                -   16y2       =  1              4                17.      y2   -   16x2   =  1 19.     100x2   -   81y2   =  1 21.     18x2   -   11y2   =  1 23.     9y2   -   x2   =  36 25.     25x2   -   4y2   = 100 27.     16y2   -   x2   =  25 29.     36x2   -   25y2   =  49 31.     4y2   -   64x2   =  8 33.     6x2   -   15y2   =  9 35.  A hyperbola centered at the origin has vertices (0,-5) and (0,5) and passes through the point ( , 10).  Find its equation.              y2                                -   x2       =  1              25               37.    Hyperbola 39.    Line 41.    Parabola       Back to the Exercises Back to The Conic Page Back to the Math 154 Page Back to the Math Department Home Page