Differentiation Rules


 Constant Rule and Power Rule

We have seen the following derivatives:

  1. If f(x) = c, then f '(x) = 0

  2. If f(x) = x, then f '(x) = 1

  3. If f(x) = x2, then f '(x) = 2x

  4. If f(x) = x3, then f '(x) = 3x2

  5. If f(x) = x4, then f '(x) = 4x3

This leads us the guess the following theorem.

Theorem

d/dx (xn) = nxn-1


Proof:

First note that the binomial theorem says that 

        (x + h)n  =  xn + nhxn-1 + nC2h2xn-2 + ... + nhn-1x + hn 

        =   xn + nhxn-1 + h2(Stuff) 

For our purposes, stuff is some polynomial in h and k that we do not care about.

We have

               


Sum Difference and Constant Multiple Rules

 

Theorem:  If f and g are differentiable then

A)   [f + g]' = f ' + g'

B)  [f - g]' = f ' - g'

C)  [cf]' = c(f ')

 

Proof of C)

                          cf(x + h) - cf(x)
            lim                                          
             h ->0              h

 

                             c[f(x + h) - f(x)]
            =  lim                                          
                 h ->0              h

 

                                f(x + h) - f(x)
            =  c lim                                      
                   h ->0              h

 

            =  c f '(x)

 

Example  

We know that if f(x) = x2 then f '(x) = 2x and that if f(x) = x then f '(x) = 1 so that if

        h(x) = 4x2 -3x

then

        h'(x)  =  4(2x) - 3(1)  =  8x - 1

 


 

More Applications

Example

Find the derivatives of the following functions:

  1. f(x) = 4x3 -2x100

  2. f(x) = 3x5 + 4x8 - x + 2

  3.  f(x) = (x3 - 2)2

  4. f(x)  =  10

  5. f(x)  =  6 / x3 

Solution  

We use our new derivative rules to find

  1. 12x2 - 200x99

  2. 15x3+32x7-1

  3. First we FOIL to get

            [x6 - 4x3 + 4]' 

    Now use the derivative rule for powers

            6x5 - 12x2 

  4. Begin by writing the square root sign as a fractional exponent

            10x1/2 


    Now use the power rule to get

            f '(x)  =  10(1/2)x -1/2  =  5x -1/2

 

Example:

Find the equation to the tangent line to 

        y = 3x3 - x + 4 

at the point (1,6)

Solution:

        y' = 9x2 - 1 

at x = 1 this is 8. Using the point-slope equation for the line gives

        y - 6 = 8(x - 1) 

or 

        y = 8x - 2

Example:

Find the points where the tangent line to 

        y = x3 - 3x- 24x + 3 

is horizontal.

Solution:

We find 

        y' = 3x2 - 6x - 24

The tangent line will be horizontal when its slope is zero, that is, the derivative is zero.  Setting the derivative equal to zero gives:

        3x2 - 6x - 24 = 0 

or

        x2 - 2x - 8 = 0 

or

        (x - 4)(x + 2) = 0

so that 

        x = 4 or x = -2

 


Back to the calculus home page

Back to the math department home page

e-mail Questions and Suggestions