Root and Ratio Test

I.  Quiz

II.  Homework

III.  The Ratio Test

Theorem:  The Ratio Test

Let sum an be a series then

1)  If lim |an+1/an| < 1 then the series converges absolutely

2)  If   |an+1/an| >1 then the series diverges

3)  |an+1/an| = 1 then try another test.

Proof:  Suppose that  lim |an+1/an| <= R < 1 then for the tail,

an+1 < Ran

an+2 < Ran+1 < R2an  ...

an+k < Rkan

So that

sum an  < sum aRk

Which converges by the GST.

Example Determine the convergence or divergence of

sum 4n/n!

We use the Ratio Test:

lim 4n+1/(n+1)!/4n/n! = lim [n!/(n+1)!][4n+1/4n = lim 4/(n + 1) = 0

Hence the series converges by the Ratio Test

Exercises  Determine the convergence or divergence of

A)  sum n!/[n(3n)]

B)  sum 2n/3n+1 

IV.  The Root Test

Let sum an be a series with nonzero terms at the tail, then

1) sum an converges absolutely if lim nth root(an) < 1

2)  sum an diverges if lim nth root(an) > 1

3)  if  lim nth root(an) = 1 then try another test.

Example Determine the convergence or divergence of

sum [3n/(n + 3)]n

We use the root test:   lim nth root [3n/(n + 3)]n  = lim 3n/(n + 3) = lim 3/1 = 3

Hence the series diverges.

Exercises Determine the convergence or divergence of

A)  sum exp[-n3 - nn2]

B)  sum (n/(n + 1))n