| 
 
Lagrange Multipliers
     Lagrange Multipliers 
     
    Suppose that we have a function  f(x,y) that we want to maximize in the restricted
domain  g(x,y) = c for some constant c.  Then we can look at the level curves of
     f and seek the largest level
curve that intersects the curve  g(x,y) = c.  It is not hard to see that
these curves will be tangent.  Hence the gradient vectors will be parallel. 
     
     
      
        | 
 
                   
Theorem 
 
 Let f(x,y)
 be differentiable and 
 g(x,y) = c   define
a smooth curve.  Then the maximum and minimum of   f 
 subject to the constraint
g   occur when 
 
         
grad f  =  l grad g 
 
 
for some constant  l.  | 
       
     
 
 
Example 
 
Find the extrema of  
 
        f(x,y)  =  x2 - y2  
 
subject to
the constraint  
 
        y - x2  =  0 
 
Solution:   
 
We have  
 
        <2x, -2y>  =  l<-2x,
1>
 
This gives us the three equations: 
 
        2x  = 
-l 2x        
-2y  =  l (1)         
and         y - x2 
=  0 
 
the first equation gives us (for  x nonzero) 
 
        l  = 
-1 
 
Hence the second equation becomes 
 
        -2y  =  -1  
 
 so that  
 
        y 
=  1/2 
 
the third equation gives us 
 
        1/2 - x2  =  0 
 
Hence 
 
        x  =  /
2 
 
For  x = 0, we see that  y =
0.  Hence the two possible local extrema
are  
 
        ( 
 / 2, 1/2)    
  
and        (0,0) 
 
Plugging into f(x,y), we see that 
 
        f ( /2,
1/2)  =  1/4 
 
and  
 
        f(0,0)  =  0 
 
Hence  1/4 is the local maximum and  0 is the
local minimum. 
 
 
Example 2 
 
Find the distance from the origin to the surface  
 
        xyz  =  8 
 
 
Solution 
 
We minimize  
 
        D  =  x2 + y2 + z2   
 
subject
to the constraint 
 
        xyz  =  1 
 
We have 
 
       
<2x, 2y, 2z> = l <yz, xz, xy>
 
        2x 
=  l 
 yz        2y  =  l
xz,       
2z  =  l xy 
 
or 
 
                   
2x            
2y              
2z 
        l  =             
=                
=             
                   
yz             xz               
xy 
 
Multiply all three by xyz to get  
 
        2x2  =  2y2 
=  2z2 
 
Hence  
 
        x  =  ± y  =  ± z
 
so that  
 
        ±x3 
=   8   
or    x  =  ±2 
 
We get the points  
 
        (2, 2, 2), (2, -2, -2), (-2, -2, 2),
(-2, 2, -2) 
 
these all have distance 
  
 from the origin. 
 
  
Two constraints
     
Example 
 
    Maximize  
 
            x2 + y2 + z2 
      
 
    on the intersection of the two surfaces: 
 
            xyz  = 
1       and        x2 +
    y2 + 2z2  =  4 
 
Solution 
 
    Now we set 
 
            grad f  =  a grad g + b grad h 
 
    which gives 
 
            <2x, 2y, 2z>  =  a
    <yz, xz, xy> + b <2x, 2y, 4z> 
 
    we have the five equations: 
 
            2x  =  ayz +
    2bx,     2y  =  axz + 2by,     2z 
    =  axy + 4bz,     
 
        xyz  = 
1,   and    
x2 + z  =  1 
 
    Multiply the first equation by x, the second by
 y and the third by  z  gives 
 
            2x2  =  axyz + 2bx2,    
    2y2  =  axyz + 2by2,     2z2 
    =  axyz + 4bz2, 
 
    Solving each for axyz gives 
 
            axyz  =  2x2  - 2bx2 
    =  2y2  - 2by2  =  2z2  - 4bz2 
 
    This gives that  
  
            2x2(1 - b)  = 
    2y2(1
    - b)  =  2z2 (1 - 2b) 
 
    This first equality gives 
 
            x  =  ±y 
 
    Using the last of the original equations to solve for  x2  gives 
 
            x2   = 
    1 - z 
 
The equation        
xyz  =  1 becomes        
(1 - z)z  =  1 or        
z2 - z + 1  =  0 
 
    Using the quadratic formula gives 
 
            z  = 1/2 ± 
     
 /2 
 
    Now we leave it to the reader to use        
x2 + z  =  1     
and      x  =  ±y
  
            
 
 
To find x and y.  
  
 
Back to the Functions of Several
Variables Page
 Back
to the Math 107 Home Page
 Back to the Math Department Home Page
 e-mail
Questions and Suggestions
    |