| 
 
The Chain Rule 
     Review Of The Chain Rule For One Variable 
     
    Recall that if  
     
    
            y  = 
    f(x)      and      x 
    =  x(t)  
    
     
 then 
     
               
    dy            dy      
    dx 
                        
    =                            
                dt            
    dx        dt
     
     
     
     
    Example 
     
    Suppose that  
     
    
            z  =  f(x,y)  = 
    x2 + 2x - xy + y2    
     
and  
     
    
            x(t)  =  t2 
    +1           
    y(t)  =  t3 - t2   
     
    Then what is  dz/dt for  t = 2? 
     
Solution:    
 
    f can be written as 
 
            [x(t)]2 + 2[x(t)] -
    x(t)y(t) + [y(t)]2   
 
    Hence the derivative is 
 
            2x(t)[x'(t)] + 2(2t) - [x(t)y'(t) +
    y(t)x'(t)] + 2y(t)y'(t)    
        
    =  2x(t)[2t] + 2(2t) - [x(t)(3t2 - 2t) + y(t)(2t)] + 2y(t)(3t2
-
    2t) 
 
    Now since  t = 2,  
     
            x(2)  = 
5       and      
y(2)  =  4 
     
    We can substitute in to get 
     
    
             2(5)[2(2)] + 2(2)(2) -
    [(5)(3(2)2- 2(2)) + (4)2(2))] + 2(4)(3(2)2- 2(2)) 
    
     
    
            =  56 
    
 
Alternatively we use the  chain rule: 
 
       
    
 
 
With this chain rule the derivative becomes
 
 
       (2x + 2 - y)(2t) + (-x + 2y)(3t2 - 2t) 
 
When  
 
        t = 2,     
x(2) = 5  
 
 and  
 
        y(2) 
=  8 - 4  =  4  
 
 hence 
 
        df / dt  =  [2(5) + 2 - 4](2)(2) + [-5 +
2(4)] [3(4) - 2(2)]  =  56 
 
 
Exercise: 
 
    Let  
 
            f(x,y) = 2x -3xy  
 
 and  
 
            x(q) 
    =  2 cos q      and     
y(q)  = 2 sin q 
Find  df/dq 
 
  
The Chain Rule for 2 Variables
 
     
      
        | 
 
 A Chain Rule For Two Variables
 
Let   f(x,y)   be a 2 variable function and 
 
          x = x(u,v)     
and      y =
y(u,v) 
 
 then
 
          
 
          | 
       
     
    
 
Example: Polar Coordinates 
 
    Let   
 
            f(x,y)  =  x2y  
 
 and  
 
            x  =  r cos q    
and     y  =  r sin q 
 
    then 
 
               
     
     
    
             =  2xy cos q +
x2 sin q
    
 
         =  2r2 cos2
q
sin q +
r2cos2 q sin q  
 
         =  3r2cos2q sinq 
 
 
 
Exercise   
 
Let  
 
        f(x,y)  =  x - 2y2   
 
and  
 
        x(u,v)  =  u -
2v       
y(u,v)  =  2u + v 
 
find  
 
           
 
 
  
Implicit Differentiation 
 
Suppose we have the ellipsoid 
 
        x2 + y2  + 2z2 
=  1 
 
and we want to find  
 
        
 
 
 
We write 
 
        f(x,y,z)  =  f(x, y, z(x,y)) 
=  0 
 
but  
 
         
 
Where the first factors correspond to the partials with respect to the first,
second and third variables respectively and the second factors are with respect
to the actual x.  We have      
 
             Jx/Jx = 1    
and        Jy/Jx = 0 
    Hence  
 
            0 = Jf/Jx +
    Jf/Jz Jz/Jx 
 
    So that 
 
            Jz/Jx =
    -Jf/Jx / Jf/Jz =
    -fx/fz 
 
    for the ellipsoid: 
 
            Jf/Jx = 2x/4z =
x/2z In
    general, 
     
      
        | zx = -fx/fz   
          and     zy = -fy/fz  | 
       
     
 
  
 
Back to the Functions of Several
Variables Page
 Back
to the Math 107 Home Page
 Back to the Math Department Home Page
 e-mail
Questions and Suggestions  |