Derivatives of the Trigonometric Functions I. Quiz II. Homework III. sin(x)/x Theorem: lim h ->0 sin(h)/h = 1 Proof: Consider the diagram below
Where the circle is the unit circle. Then the coordinates of E are (cos(t),sin(t)). Notice that the the areas have the following orders: triangle OBE < sector OCE < triangle OCD Area of OBE = 1/2 sin(t)cos(t), Area of OCE = 1/2 t , Area of OCD = 1/2sin(t)/cos(t) (since similar triangles give CD = EB/OB = sin(t)/cos(t)) Hence 1/2 sin(t)cos(t) < 1/2 t < 1/2sin(t)/cos(t) or cos(t) < t/sin(t) < 1/cos(t) As t -> 0 both cos(t) and 1/cos(t) approach 1. By the squeeze theorem, t/sin(t) -> 1 Hence sin(t)/t -> 1 We will leave it to be read that lim t-> 0 (cos(t)- 1)/t = 0 IV. Derivative of f(x) = sin(x) Theorem: If f(x) = sin(x) then f'(x) = cos(x) Proof: We compute lim h-> 0 [sin(x + h) - sin(x)]/h = lim h->0 [sin(x)cos(h) + sin(h)cos(x) - sin(x)]h = lim h -> 0 [(sin(x)cos(h) - sin(x))/h + (sin(h)cos(x)/h)] = sin(x) lim h ->0 [(cos(h) - 1)/h] + cos(x) lim h->0 [sin(h)/h] = cos(x) V. d/dx cos(x) Theorem: If f(x) = cos(x) then f'(x) = sin(x) Proof: f(x) = cos(x) = sin(pi/2 - x) Hence f'(x) = -cos(pi/2 - x) = -sin(x) VI. The other trig functions Example: d/dx tan(x) = d/dx (sin(x)/cos(x)) = [cos(x)cos(x) - sin(x)(-sin(x))/(cos(x))2] = 1/ (cos(x))2 = sec2 (x) Exercise: Show that A. d/dx cot(x) = -csc2 (x) B. d/dx sec(x) = sec(x) tan(x) C. d/dx csc(x) = -csc(x)cot(x) D. d/dx ln(sec(x) + tan(x)) = sec(x) E. d/dx ln(sec(x) ) = tan(x)
|