Limits and the Derivative

I.  Quiz

II.  Homework

III.    Limits infinities and zeros.

It is useful to have the following symbolic fractions when dealing with limits.

A)  (infinity)/(finite) = infinity

B)  0/(finite nonzero) = infinity

C)  (finite)/(infinity) = 0

D)  (finite nonzero)/0 = infinity

E)  (infinity)/(infinity) = Do Algebra

F)  0/0 = Do Algebra

Example:

1) lim x  -> 0 (3x + 5)/(2x2  + x) = 5/0 = DNE

2) lim x  -> 1 of (x2  - 1)/(x + 3) = 0/4 = 0

3)  lim x  -> 2 of (x2  - 4)/(x - 2)  = 0/0

We factor to get:  ((x - 2)(x + 2))/(x - 2) = x + 2 = 4

4)  Try lim x  -> -1  of (x2  - 2x - 3)/(x2  + 8x + 7)

5)  Try lim x  -> 3/2 of (6x2  + x - 15)/(8x2  - 6x - 9)

6)  lim x  -> 2 of (sqrt(x - 1) - 1)/(x2  - 4) = 0/0

we rationalize the denominator by multiplying by the conjugate root: sqrt(x - 1) + 1 to obtain

 

7)  Find lim x  -> 0 of (sqrt(3 + x) - sqrt(3))/x

IV.  Limits and Trigonometry

Use your calculator to graph (sinx)/x and discover that

lim x  -> 0 of (sinx)/x = 1

Corollary:

lim x  -> 0 of (1 - cosx)/x = 0

proof:  (1 - cosx)/x = (1 - sqrt(1 - sin2x))/x =

((1 + sqrt(1 - sin2x)) (1 - sqrt(1 - sin2x)))/((x)(1  + sqrt(1 - sin2x)))

= (1 - (1 - sin2x))/((x)(1  + sqrt(1 - sin2x)))

= sin2x/((x)(1  + sqrt(1 - sin2x)))

= ((sinx)/x) (sinx)/((1  + sqrt(1 - sin2x))

= (1) (0/2) = 0

Applications:  

1)  lim x  -> 0 of (tanx)/x = ((sinx)/(cosx))/x = ((sinx)/x)(1/cosx) = (1)(1) = 1

2)  lim x  -> 0 of (1 - cos(2x))/x

We set u = 2x then as x goes to zero so does u.  we have x = u/2 substituting we get

(1 - cosu)/(u/2) = 2((1 - cosu)/u) = 2(0) = 0

Try (sin(5x))/(2x)

V.  The Squeeze Theorem

The squeeze theorem says that if a function  f is between two functions that have the same limit, then f has that limit also.

Let h < f < g in an open interval containing c, except possibly at c.  then if

lim as x approaches c of h = lim x -> c of g = L, then

lim as x -> c of f = L.

Application:  Show that lim as x -> 0 of x sin(1/x) = 0

Proof:  We have

-x < xsin(1/x) < x  for all x,

Since lim x -> 0 (-x) = lim x -> 0 (x) = 0 the squeeze theorem tells us that

lim x-> 0 x sin(1/x) = 0.