Key to Practice Midterm III

Problem 1

A.  4,7,12,19,28,39

B.  n2 + 3

Problem 2

First for n = 1, 3 = 3/2 (3 - 1) 
Assume the theorem is true for n = k-1, then
        Si=1k-1 3i = 3/2 (3k-1 - 1)
We need to prove that 
        Si=1k 3i = 3/2 (3k - 1)
We have that
        Si=1k 3i = Si=1k-1 3i  + 3k 

        =  3/2 (3k-1 - 1) + 3k 

        = 3/2 (3k-1 - 1) + 3/2 (2)3k-1 

        = 3/2(3k-1 - 1 + (2)3k-1)

        = 3/2((3)3k-1 - 1 )

        =  3/2((3k - 1 )


Hence, by mathematical induction, the theorem is true.

Problem 3

Sn=110(-1)n+1(5 + 2(n - 1)/n3 

Problem 4

699,050

Problem 5

1/2 x2 - 1/6 x3 + 1/24 x4 

Problem 6
-33

Problem 7
322mL

Problem 8

99,768,240

Problem 9

A.  False, this is only true for |r| < 1

B.  True, 9C4 = 126