Key to the Practice Final Exam

Problem 1
x = 3a

Problem 2
y = 2 e0.03t ,    23.1 hours

Problem 3
Through (1,4) reflect across the vertical axis.  The new asymptote is y = 3.

Problem 4
0.078125 meters

Problem 5
Vertices:  (2,-2 + ), (-2,-2 + ), (2,-2 - ), (-2,-2 - ), 
Foci:  (2- ,-2),  (2 + , -2)
e = /2

Problem 6
(3,5,1)

Problem 7

  1. 4 2 - 3x
    -2 -4


  2. x/(x - 2) -2/(x - 2)
    -1/(x - 2) 1/(x - 2)

    Undefined for x - 2

  3. 6 - 6x

Problem 8

13

Problem 9
For n = 1, 1 = 1 o.k.
Now assume the theorem is true for n = k - 1, then
        Si=1k-1i = (k - 1)(k)/2
Goal:  Si=1k i = (k)(k + 1)/2
we have
        Si=1k i = Si=1k-1 i + k
  
      = (k - 1)(k)/2 + k
  
      = (k - 1)(k)/2 + 2k/2
        = [(k - 1)(k) + 2k]/2
        = [k2 - k + 2k]/2
        = [k2 + k]/2
        = (k)(k + 1)/2

by mathematical induction the theorem is true.

Problem 10

  1. False, they could be negative 
  2. False, if x = 1/e, then ln(1/e) = -1 is less than 0.
  3. False, the bottom focus lies below the vertex and can dip below the x-axis.
  4. False, let A be the zero matrix

Problem 11
107,616,795

Problem 12
35