Hyperbolic Functions

I.  Quiz

II.  Homework Questions

III.  Definition of the Hyperbolic Functions

We define the hyperbolic functions as follows:

  1. sinh(x) = [ex - e-x]/2

  2. cosh(x) = [ex + e-x]/2 

  3. tanh(x) = sinh(x)/cosh(x)

We will show that

  1. (cosh(x))2 - (sinh(x))2 = 1 

  2. d/dx(sinh(x)) = cosh(x)

  3. d/dx(cosh(x)) = sinh(x)

Theorem:

  1. d/dx sinh-1(x) = 1/sqrt(1 + x2)

  2. d/dx cosh-1(x) = 1/sqrt(x2  - 1)

  3. d/dx tanh-1(x) = d/dx coth-1(x) = 1/(1 - x2)

  4. d/dx sech-1(x) = 1/xsqrt(1 - x2)

  5. d/dx csch-1(x) = 1/xsqrt(1 + x2)

Example:  

VI.  The derivative of the inverse hyperbolic trig functions

Example:  Find the derivative of arctanhx

Taking derivatives implicitly, we have

[arctanh(x)]' = 1/sech2(arctanh(x))

Since cosh2(x) - sinh2(x) = 1, dividing by cosh2(x), we get

1 - tanh2(x) = sech2(x)

so that

[arctanh(x)]' = 1/sech2(arctanh(x)) = 1/[1 - tanh2(arctanh(x))] = 1/[1 - x2]